Improving Vector Evaluated Particle Swarm Optimisation by Incorporating Nondominated Solutions
نویسندگان
چکیده
The Vector Evaluated Particle Swarm Optimisation algorithm is widely used to solve multiobjective optimisation problems. This algorithm optimises one objective using a swarm of particles where their movements are guided by the best solution found by another swarm. However, the best solution of a swarm is only updated when a newly generated solution has better fitness than the best solution at the objective function optimised by that swarm, yielding poor solutions for the multiobjective optimisation problems. Thus, an improved Vector Evaluated Particle Swarm Optimisation algorithm is introduced by incorporating the nondominated solutions as the guidance for a swarm rather than using the best solution from another swarm. In this paper, the performance of improved Vector Evaluated Particle Swarm Optimisation algorithm is investigated using performance measures such as the number of nondominated solutions found, the generational distance, the spread, and the hypervolume. The results suggest that the improved Vector Evaluated Particle Swarm Optimisation algorithm has impressive performance compared with the conventional Vector Evaluated Particle Swarm Optimisation algorithm.
منابع مشابه
Improving Vector Evaluated Particle Swarm Optimisation Using Multiple Nondominated Leaders
The vector evaluated particle swarm optimisation (VEPSO) algorithm was previously improved by incorporating nondominated solutions for solving multiobjective optimisation problems. However, the obtained solutions did not converge close to the Pareto front and also did not distribute evenly over the Pareto front. Therefore, in this study, the concept of multiple nondominated leaders is incorpora...
متن کاملParticle Swarm Optimization for Interactive Fuzzy Multiobjective Nonlinear Programming
In recent years, particle swarm optimization (PSO) proposed by Kennedy et al. has been widely used as a general approximate solution method for optimization problems. The authors proposed a revised PSO (rPSO) method incorporating the homomorphous mapping and the multiple stretching technique in order to cope with shortcomings of PSO and showed its efficiency for nonlinear programming problems. ...
متن کاملA New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic
In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...
متن کاملA generalized multiobjective particle swarm optimization solver for spreadsheet models: application to water quality
This paper presents an application of an evolutionary optimization algorithm for multiobjective analysis of selective withdrawal from a thermally stratified reservoir. A multiobjective particle swarm optimization (MOPSO) algorithm is used to find nondominated (Pareto) solutions when minimizing deviations from outflow water quality targets of: (i) temperature; (ii) dissolved oxygen (DO); (iii) t...
متن کاملIdentification of transformer fault based on dissolved gas analysis using hybrid support vector machine-modified evolutionary particle swarm optimisation
Early detection of power transformer fault is important because it can reduce the maintenance cost of the transformer and it can ensure continuous electricity supply in power systems. Dissolved Gas Analysis (DGA) technique is commonly used to identify oil-filled power transformer fault type but utilisation of artificial intelligence method with optimisation methods has shown convincing results....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013